Diels-Alder Cyclization of a Dihydropyridine: NMR Spectroscopy, X-Ray Crystallography, and DFT Computations. Bent Aromatic Dimeric Clusters in the Solid Phase

by Gideon Fraenkel*, Jinhua Song, Albert Chow, and Judith C. Gallucci
Department of Chemistry, Ohio State University, 100 W. 18th Avenue, Columbus, OH 43210, USA
(phone: +1-614-2924210; fax: +1-614-2921685; e-mail: fraenkel@mps.ohio-state.edu)

[^0]Introduction. - We have previously shown that, whereas mixtures of pyridines $\mathbf{1}$ with Grignard reagents remain unchanged over several weeks at room temperature, addition of ClCOOEt immediately gave the 1,2-dihydro-1-(ethoxycarbonyl)pyridine $\mathbf{2}$ (see Scheme 1 [1a]).

Scheme 1

Evidently, ClCOOEt reacts much faster with the N -atom of pyridine than with the Grignard reagent. Then, the Grignard reagent adds rapidly to the resulting electrondeficient pyridinium salt $\mathbf{3}$ [1b] [1c]. In a similar fashion, we reported that acylation of the (pyridin-4-yl)alkylmagensium chloride $\mathbf{4}$ with ClCOOEt takes place at the N -atom (see 5), immediately followed by ring closure to the spiro-dihydropyridine 6 [2] (Scheme 2). Again, the N -atom of pyridine is more reactive to acylation than the Grignard reagent.

Scheme 2

It has also been reported that 2-alkenyl-1-(alkoxycarbonyl)-1,2-dihydropyridines 7, prepared using the reaction shown in Scheme 1, easily undergo intramolecular Diels-Alder reactions (see 7 $\rightarrow \mathbf{8}$; Scheme 3).

Structures were assigned as consistent with the NMR data, together with the assumed course of the chemistry [3]. In our experience and as shown below, NMR spectra of cycloadducts of type $\mathbf{8}$ are quite complicated and not necessarily unambiguously definitive of the expected reaction products. Hence, considering that reactions such as $\mathbf{1} \rightarrow \mathbf{7} \rightarrow \mathbf{8}$ are potentially highly efficient routes to complex polycyclic analogs of aza-alkaloids and of potential pharmacological application, we studied the Diels-Alder cyclization of a new similar system in considerable detail.

Below, we show how X-ray crystallography is indispensable to identify the structures of compounds of type 8. Further computations of chemical shifts using B3LYP/6-311G* in conjunction with GIAO closely reproduced the observed values, thus validating the DFT model for our Diels-Alder product and at the same time assigning the previously ambiguous shifts.

Results and Discussion. - Synthesis. In the course of some new studies of ion-pairing within and among dihydropyridine salts [4], we investigated the Diels-Alder reactions of 1-(alkoxycarbonyl)-4-alkyl-1,2-dihydro-2-(pent-2-enyl)pyridines. The precursors, $\mathbf{9 a}, \mathbf{9 b}$, and $\mathbf{9 c}$ (Scheme 4), were prepared as depicted in Scheme 1. Their structures were confirmed unambiguously by the NMR data. These compounds appear to consist of almost 1:1 mixtures of rotamers around the $\mathrm{N}-\mathrm{CO}$ bond. This is easily seen from the ${ }^{13} \mathrm{C}$-NMR spectra wherein many resonances are split into narrowly separated doublets. Rotation around the latter bonds must be slow with respect to the NMR time scale at room temperature.

Compounds $9 \mathbf{a}, \mathbf{9 b}$, and $9 \mathbf{c}$ were heated under reflux in triethylene glycol dimethyl ether (triglyme) for 3 d at 216°. As shown in Scheme 4, the first two compounds underwent intramolecular Diels-Alder cyclizations to 10a and 10b, while 9c aromatized to $\mathbf{1 1}$ (Scheme 5). In the case of 9c, it is not unreasonable that aromatization would involve cycloelimination of isobutane. A preliminary proposal for a transition state for such a process would be characterized by polarization of the ${ }^{t} \mathrm{Bu}-\mathrm{O}$ bond and thus developing partial carbocationic character of the ${ }^{t} \mathrm{Bu}$ moiety (see $\mathbf{1 2}^{\ddagger}$). Such an elimination of alkane would be energetically favored for $9 \mathbf{c}$ compared to $9 \mathbf{a}$ and 9b.

Scheme 5

The NMR spectra for the crude products $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ indicated the presence of small amounts of solvent. Otherwise these spectra were identical to those for the products purified by chromatography, thus showing that the reactions were almost quantitative. However, in each case $c a .50 \%$ of the product became lost during chromatography, possibly due to complex chemical transformations induced by absorbent silica $\left(\mathrm{SiO}_{2}\right)$. Similar effects have been noted in the literature [3].

As 10a and 10b did not crystallize, it was decided to convert one to the corresponding amine. Compounds $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ were resistant to direct hydrolysis, including treatment with KOH in MeOH . However, treatment of $\mathbf{1 0 a}$ with BuLi in hexane $/ \mathrm{Et}_{2} \mathrm{O}$, followed by aqueous hydrolysis, gave a light yellow oil after workup, whose NMR spectra were consistent with the expected free amine $\mathbf{1 3}$ (see below). We were unable to produce a crystalline picrate from 13. However, $\mathbf{1 3}$ reacted cleanly with 1-chloro-2,4-dinitrobenzene to give the easily crystallized N-(2,4-dinitrophenyl) derivative of $\mathbf{1 3}$ [5] (see 14). The NMR data for $\mathbf{1 4}$ were consistent with the assumed Diels-Alder structure and were similar to those for 10a, 10b, and $\mathbf{1 3}$ as described below.

10a

10b

13

14
$N M R$. Not unexpectedly, the NMR data for 10a, 10b, 13, and 14 were quite similar. The narrow equal doublets of many of the resonances of $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ are most likely due to the presence of a $1: 1$ mixture of rotamers around the $\mathrm{N}-\mathrm{CO}$ bond under conditions of slow rotation at room temperature with respect to the NMR time scale. The NMR data of $\mathbf{1 0 a}$ in CDCl_{3} are displayed in Fig. 1 (${ }^{1} \mathrm{H}-\mathrm{NMR}$ at 800.13 MHz), Fig. $2\left({ }^{13} \mathrm{C}-\mathrm{APT}\right.$; at 75.47 MHz$)$, Fig. $3\left({ }^{1} \mathrm{H}-\right.$ and ${ }^{13} \mathrm{C}-\mathrm{HETCOR}$; at 800.13 and 201.2 MHz, resp.), and Fig. 4 (${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-INADEQUATE experiment; at 600.13 and 150.9 MHz , resp.). Initial assignments of NMR spectra were based on the method of synthesis, together with correlations of shifts and coupling patterns with published data of compounds with similar structural features to ours, N-(alkoxycarbonyl)-1,2dihydropyridines (Scheme 1), and, for our Diels-Alder products, published NMR data for the Diels-Alder cyclization product 8 from 2-(but-3-en-1-yl)-4-(tert-butyl)-1-(ethoxycarbonyl)-1,2-dihydropyridine (7; $\mathbf{Z}={ }^{t} \mathrm{Bu}, n=2$; Scheme 3). The latter com-

Fig. 1. ${ }^{1} \mathrm{H}$-NMR Spectrum of $\mathbf{1 0 a}$ (at 800.13 MHz , in CDCl_{3})

Fig. 2. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{1 0 a}\left(\mathrm{APT}\right.$; at 75.47 MHz , in CDCl_{3})
pound shares the structural feature incorporated by C -atoms $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3)$, and C(7) in 10a and 10b. Further assignments were established by using the INADEQUATE experiment for 10a displayed in Fig. 4, which was sufficient to assign the entire NMR data. Because of the low incidence of molecules at natural abundance with one pair of ${ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ directly bonded, it was necessary to use a much higher concentrated solution ($c a .650 \mathrm{mg}$ of $\mathbf{1 0 a}$ in 0.5 ml of CDCl_{3}) than usual. Due to this concentration effect, the ${ }^{13} \mathrm{C}$ chemical shift values in the INADEQUATE plot are all $c a .1 \mathrm{ppm}$ lower than in all our other NMR experiments. Also due to the very high concentration of 10a used, the INADEQUATE data are not sufficiently resolved to reveal the narrow splitting due to rotamers. First, we assume that 10a is indeed the intramolecular Diels-Alder product. Then, using the shift assignments made from previous correlations (Fig. 3) for $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3)$, and $\mathrm{C}(7)$, as $\delta(\mathrm{C}) 47.5,121,156$, and 52 , respectively, we now list the correlations in the INADEQUATE plot as follows: from $C(1)$ at 47.5 to $121(C(2))$ and $156(C(3))$, both given, and 32.4 which establishes $C(6)$; from $C(3)$ at 156 to $121(\mathrm{C}(2)), 34.5\left(\mathrm{C}_{\mathrm{q}}(11)\right)$ and $40(\mathrm{C}(4))$; from $\mathrm{C}(4)$ at 40 to $156(\mathrm{C}(3)), 27.3$ $(\mathrm{C}(5))$, and $52(\mathrm{C}(7))$, the last two distinguished from electronegativity considerations; from $\mathrm{C}(5)$ at 27.3 to $40(\mathrm{C}(4)), 32(\mathrm{C}(6))$, and $29.5(\mathrm{C}(10))$, which establishes $\mathrm{C}(10)$; from $\mathrm{C}(10)$ at 29.5 to $27.3(\mathrm{C}(5))$ and $14.4(\mathrm{C}(9))$; from $\mathrm{C}(9)$ at 14.4 to $29.5(\mathrm{C}(10))$ (the doublets at 27.4 and 28.5 establish the $\mathrm{C}(8)$ shifts in both rotamers); and finally from $\mathrm{C}(11)$ at 34.5 to $156(\mathrm{C}(3))$ and $27.8(\mathrm{C}(12)-\mathrm{C}(14))$. As noted, there is considerable overlap among the resonances of $\mathrm{C}(5), \mathrm{C}(8), \mathrm{C}(10)$, and $\mathrm{C}(12)-\mathrm{C}(14)$, respectively.

Fig. 3. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of $\mathbf{1 0 a}$ (HETCOR; at 800.13 and 201.21 MHz , resp., in CDCl_{3})

However, $\mathrm{C}(5)$ and $\mathrm{C}(12)$ are distinguished in the APT plot (Fig. 2), since the Me Catoms of the ${ }^{\text {' } B u}$ group $(\mathrm{C}(12)-\mathrm{C}(14))$ give the larger peak at $\delta(\mathrm{C}) 27.8$. Further, due to the proximity of one of the $\mathrm{CH}_{2}(8) \mathrm{H}$-atoms to the EtOCO O-atoms in each of the rotamers one would expect these H -atoms to show significant deshielding compared to all the other CH_{2} hydrocarbon-like H -atom shifts. Thus the resonances on the HETCOR plot (Fig. 3) at $\delta(\mathrm{C}) 28.5$ and 27.4 must be assigned to $\mathrm{C}(8)$ in the two rotamers. The first C -atom signal correlates with directly bonded H -atoms signal at $\delta(\mathrm{H}) 2.23$ and 1.19, and the second with those at $\delta(\mathrm{H}) 1.18$ and 2.11. The H -atom shifts at $\delta(\mathrm{H}) 2.1$ and 2.23 are unusually deshielded for a non-polar hydrocarbon environment. Hence, they are assigned as close to the EtOCO O-atoms in each of the two rotamers. As noted in retrospect, the complete NMR assignments for 10a have been obtained from the above NMR data and independently of literature correlations. All the other hydrocarbon-like H -atom signals lie in the normal hydrocarbon region. All these assignments are consistent with the $1 \mathrm{D}{ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{APT}$, and HETCOR plots. As indicated above, all assignments were also noted in the INADEQUATE and HETCOR plots.

Fig. 4. ${ }^{13} \mathrm{C}$-NMR Spectrum of $\mathbf{1 0 a}$ (INADEQUATE experiment; at 150.91 MHz , in CDCl_{3})

Also, X-ray crystallography of $\mathbf{1 4}$ (see below) confirmed its assumed structure as well as, indirectly, the frameworks of $\mathbf{1 0 a}, \mathbf{1 0 b}$, and $\mathbf{1 3}$. Finally, ${ }^{13} \mathrm{C}$ shifts of $\mathbf{1 4}$ calculated using DFT methods were very similar to the observed values (see below). Final chemical-shift assignments for 10a, 10b, 13, and $\mathbf{1 4}$ are compiled in Table 1. Fig. 5 compares calculated and observed ${ }^{13} \mathrm{C}$ shifts for 14.

X-Ray Crystallography. Finally, the X-ray crystallographic results for $\mathbf{1 4}$ confirmed its Diels-Alder framework and, of course, those for 10a and 13, and by comparison to the NMR data of $\mathbf{1 0 b}$.

Compound $\mathbf{1 4}$ crystallizes with two molecules in the asymmetric unit labeled as $\mathbf{1 4 A}$ and 14B. There is an approximate twofold rotation axis (non-crystallographic symmetry) which relates the two molecules, and the axis lies approximately along

Table 1. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Data of $\mathbf{1 0 a}, \mathbf{1 0 b}, \mathbf{1 3}$, and $\mathbf{1 4}$ (in $\mathrm{CDCl}_{3} ; \delta$ in ppm rel. to $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard, J in Hz). Labeling as in $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ with exception of the alkyl resonances of $\left.\mathbf{1 0 b}{ }^{\text {a }}\right)^{\text {b }}$). The data in parentheses are of other rotomers of 10a and $\mathbf{1 0 b}$.

Position	$\underline{10 a^{\text {c }} \text {) }}$		10b		13		14	
	$\delta(\mathrm{H})$	$\delta(\mathrm{C})$	$\delta(\mathrm{H})$	$\delta(\mathrm{C})$	$\delta(\mathrm{H})$	$\delta(\mathrm{C})$	$\delta(\mathrm{H})$	$\delta(\mathrm{C})$
1	4.66 (4.53)	47.5 (47.3)	4.48 (4.33)	46.9 (47.0)	3.31	47.1	3.91	56.2
2	5.92 (5.84)	121.4 (120.7)	5.76 (5.84)	125.0 (125.6)	5.79	122.0	5.84	120.1
3		156.3 (156.5)		143.9 (144.0)	-	155.5	-	157.7
4	2.32 (2.31)	40.3 (40.1)	2.22 (2.29)	44.2 (43.9)	2.07	38.8	2.61	40.3
5	$1.60{ }^{\text {d }}$)	27.28 (27.26)	$1.60{ }^{\text {d }}$)	$25.8{ }^{\text {d }}$)	1.40	27.7	1.85	26.5
6	1.53 (1.41)	32.4 (32.1)	${ }^{\text {e }}$)	32.1 (31.9)	1.38/1.26	32.5	1.60/1.70	29.5
7	3.18 (3.12)	52.3 (52.2)	3.10 (3.15)	51.5 (51.4)	2.47	49.4	3.44	53.9
8	2.10 (2.21)	28.5 (27.4)	2.01 (1.02)	27.9 (26.9)	1.41/1.28	29.3	1.88	26.8
9	1.55 (1.28)	14.4 (14.3)	1.43 (1.14)	14.0 (15.0)	1.70/1.17	13.7	1.40	14.7
10	1.41 (1.53)	29.5 (29.4)	1.34 (1.22)	29.0 (28.9)	1.53/1.16	30.61	2.10/1.52	30.4
15	-	156.2 (155.3)	-	156.4 (155.4)	-	-	-	-
12-14	$0.94{ }^{\text {d }}$)	$27.8^{\text {d }}$)	$1.60{ }^{\text {d }}{ }^{\text {a }}$)	$19.1{ }^{\text {d }}{ }^{\text {a }}$)	0.86	27.7	1.06	27.8
11	-	$34.5{ }^{\text {d }}$)	-	-	-	34.1	-	34.8
17	1.12 (1.16)	$14.4{ }^{\text {d }}$)	$\begin{aligned} & \left.3.439^{\mathrm{b}}\right) \\ & \left.\left(3.435^{\mathrm{b}}\right)\right) \end{aligned}$	$\begin{gathered} \left.51.5^{\mathrm{b}}\right) \\ \left.\left(51.4^{\mathrm{b}}\right)\right) \end{gathered}$	-	-	-	-
16	4.00	60.5 (60.4)	-	-	-	-	-	-

${ }^{\text {a }}$) $\mathrm{Me}\left(\right.$ at $\mathrm{C}(3)$) in 10b. ${ }^{\text {b }}$) MeO in 10b. ${ }^{\text {c }}$) Recorded at $800 \mathrm{MHz} .{ }^{\text {d }}$) Single resonance only. ${ }^{\text {e }}$) Not resolved.

Fig. 5. ${ }^{13} C$-NMR Chemical shifts of $\mathbf{1 4}$ observed and (calculated), δ, using B3LYP/6-311G*, G1AO. *, Means average.
the direction of the c axis of the unit cell. Due to the close proximity of $\mathbf{1 4 A}$ and 14B, within the Van der Waals radii, compared to neighboring molecules in the crystal, we shall describe the pair as a cluster and name it $\mathbf{1 4 A} \cdot \mathbf{1 4 B}$, keeping in mind that the interaction between the components must be very small. The ORTEP diagram of $\mathbf{1 4 A} \cdot \mathbf{1 4 B}$ is shown in Fig. 6, and structural parameters of $\mathbf{1 4 A}$ are collected in Figs. 7 and 8 .

Fig. 6. ORTEP Plot of the 14A•14B cluster

The NMR data for 14 in CDCl_{3} solution are consistent for a single molecular species. The crystal structures of $\mathbf{1 4 A}$ and $\mathbf{1 4 B}$ only show one rotamer around the N (amine) -O (aromatic) bond. In both $\mathbf{1 4 A}$ and $\mathbf{1 4 B}$, the ortho $-\mathrm{NO}_{2}$ group lies on the opposite side of the molecule with respect to the ${ }^{t} \mathrm{Bu}$ group. This is also consistent with the NMR data.

The polycyclic frameworks of $\mathbf{1 4 A}$ and $\mathbf{1 4 B}$ each incorporate a typical chair cyclohexane for $\mathbf{1 4 A}$, i.e., $C(5 A), C(4 A), C(7 A), C(8 A), C(9 A)$, and $C(10 A)$, and the same numbers for $\mathbf{1 4 B}$, as can easily be seen by inspection of the ORTEP plots above. Also the 'leaves' of the bicyclo[2.2.2]octene tryptic are all near planar as shown by the torsional angles $\mathbf{1 4 A}$, i.e., $\mathrm{C}(1 \mathrm{~A}), \mathrm{C}(2 \mathrm{~A}), \mathrm{C}(3 \mathrm{~A})$, and $\mathrm{C}(4 \mathrm{~A}), 1.3(3)^{\circ} ; \mathrm{C}(1 \mathrm{~A}), \mathrm{N}(1 \mathrm{~A})$, $\mathrm{C}(7 \mathrm{~A})$, and $\mathrm{C}(4 \mathrm{~A}), 2.0(2)^{\circ} ; \mathrm{C}(4 \mathrm{~A}), \mathrm{C}(5 \mathrm{~A}), \mathrm{C}(6 \mathrm{~A})$, and $\mathrm{C}(1 \mathrm{~A}), 2.4(3)^{\circ}$.

Fig. 7. Selected X-ray crystallographic and (calculated B3LYP/6-311G*) bond lengths of $\mathbf{1 4 A}$ (in \AA)

Fig. 8. Selected X-ray crystallographic and (calculated) B3LYP/6-311G* bond angles (in ${ }^{\circ}$) of $\mathbf{1 4 A}$

The aromatic rings of $\mathbf{1 4 A}$ and $\mathbf{1 4 B}$ are slightly distorted from planarity, as shown in Table 2, which lists the distances of different atoms of the (dinitrophenyl)amino moiety in $\mathbf{1 4 A}$ with respect to the least-squares plane for the four aromatic C -atoms $\mathrm{C}(16 \mathrm{~A})$, $\mathrm{C}(17 \mathrm{~A}), \mathrm{C}(19 \mathrm{~A})$, and $\mathrm{C}(20 \mathrm{~A})$. Especially noticeable are the deviations of $\mathrm{N}-\mathrm{O}$ bonds from coplanarity with the above least-squares plane. Table 2 also lists the equivalent distances for 14B. The resulting bow-shaped distortion of the aromatic rings is best conveyed by Fig. 9, which shows the side views of the aromatic parts of $\mathbf{1 4 A}$ and $\mathbf{1 4 B}$. Note especially how the ortho- NO_{2} groups are bent out of the aromatic planes. Similar effects have been reported from X-ray crystallographic studies of a variety of 2,4dinitroanilines [6]. In fact, these aromatic distortions may well be due to steric repulsions between $\mathrm{N}-\mathrm{O}$ O-atoms ortho to the amine N -atom.

Table 2. Distances ([\AA]) of Different Atoms in the Aromatic Moiety of $\mathbf{1 4}$ with Respect to the LeastSquares Plane Put through for Aromatic C-Atoms Indicated in the Table

$\mathbf{1 4 A}$	$\mathbf{1 4 B}$	$\mathbf{1 4 A}$	$\mathbf{1 4 B}$		
$\mathrm{C}(16 \mathrm{~A})$	$\left.0.013(1)^{\mathrm{a}}\right)$	$\mathrm{C}(16 \mathrm{~B})$	$\left.0.014(1)^{\mathrm{a}}\right)$	$\mathrm{N}(2 \mathrm{~A})$	$0.331(4)$
$\left.\mathrm{C}(17 \mathrm{~A})-0.013(1)^{\mathrm{a}}\right)$	$\left.\mathrm{C}(17 \mathrm{~B})-0.014(1)^{\mathrm{a}}\right)$	$\mathrm{N}(2 \mathrm{~B})$	$0.419(4)$		
$\mathrm{C}(19 \mathrm{~A})$	$\left.0.013(1)^{\mathrm{a}}\right)$	$\mathrm{C}(19 \mathrm{~B})$	$\left.0.014(1)^{\mathrm{a}}\right)$	$\mathrm{O}(1 \mathrm{~A})$	$-0.156(5)$
$\mathrm{C}(20 \mathrm{~A})$	$\left.-0.013(1)^{\mathrm{a}}\right)$	$\mathrm{C}(20 \mathrm{~B})-0.194(5)$	$\mathrm{O}(1 \mathrm{~B})$	$-0.235(5)$	$1.079(5)$
$\mathrm{C}(15 \mathrm{~A})-0.118(3)$	$\mathrm{C}(15 \mathrm{~B})-0.167(3)$	$\mathrm{O}(2 \mathrm{~A})$	$-0.264(4)$	$\mathrm{O}(2 \mathrm{~B})$	$0.151(4)$
$\mathrm{C}(18 \mathrm{~A})-0.048(3)$	$\mathrm{C}(18 \mathrm{~B})-0.074(3)$	$\mathrm{O}(3 \mathrm{~A})-0.242(6)$	$\mathrm{O}(3 \mathrm{~B})-0.362(6)$		
$\mathrm{N}(1 \mathrm{~A})-0.366(5)$	$\mathrm{N}(1 \mathrm{~B})-0.505(5)$	$\mathrm{O}(4 \mathrm{~A})-0.195(6)$	$\mathrm{O}(4 \mathrm{~B})-0.283(6)$		

[^1]

Fig. 9. X-Ray crystallographic side view of aromatic rings of $\mathbf{1 4 A}$ and $\mathbf{1 4 B}$ within $\mathbf{1 4 A} \cdot \mathbf{1 4 B}$ cluster

The closest separations between 14 A and $\mathbf{1 4 B}$ within the $\mathbf{1 4 A \cdot 1 4 B}$ cluster are between sites on the slip-stacked aromatic rings, between, respectively, two C-atoms, Catom, and O -atom, and between C -atom and N -atom (see Table 3). These separations are close to the sums of the respective Van der Waals radii (Table 3). Similar results

Table 3. Closest Separations between 14 A and 14B within the $\mathbf{1 4 A} \cdot \mathbf{1 4 B}$ Cluster ($[\AA \AA$)

Sites		X-Ray	WOW $\left.^{\text {a }}\right)$	B3LYP 6-311G*	ω B97XD/6-311G*
C(18A)	C(19B $)$	3.338	3.46	3.585	3.317
C(19A)	N(3B)	3.221	3.25	3.682	3.325
C(19A)	O(4B)	3.190	3.22	3.567	3.496
C(20A)	N(3B $)$	3.205	3.25	3.567	3.317
C(20A)	O(3B)	3.163	3.22	3.602	3.295
O(2A)	C(2B)	3.153	3.22	3.540	3.318
O(3A)	C(20B $)$	3.287	3.22	3.602	3.352
N(3A)	C(19B)	3.394	3.25	3.567	

[^2]were reported from X-ray crystallographic studies of 1-(cis-2,6-dimethylpiperidine-1-$\mathrm{yl})$-2,4-dinitrobenzene [6g]. Such interactions have been ascribed to dispersion forces [8]. Note, however, that, whereas for the latter compound these interactions take place between neighboring molecules in zigzag slip-stack fashion throughout the crystal lattice [8] (Fig. 10, a), in the case of $\mathbf{1 4 A \cdot 1 4 B}$, the close dispersion interactions are largely between 14A and 14B within the dimer (Fig. 10, b). This restriction is most likely due to the bulky substitution on the amine N -atom.

Computations ${ }^{1}$). We have constructed DFT models of 14 and of $\mathbf{1 4 A} \cdot \mathbf{1 4 B}$ cluster as entities in the gas phase or in non-polar solution using B3LYP/6-311G*, B3LYP/6$311+\mathrm{G}^{*}$ [9][10], and $\omega \mathrm{B} 97 \mathrm{XD} / 6-311 \mathrm{G}^{*}$ [11]. Full geometry optimizations were carried out using these models, and frequency calculations served to confirm the stabilities of the calculated geometries. All these models closely reproduced the X-ray structure of the 14A-14B cluster (see, e.g., Figs. 7 and 8, which compare the X-ray crystallographic and B3LYP/6-3-11G* calculated structural parameters for $\mathbf{1 4 A}$). Further, the calculated structures for $\mathbf{1 4 A}$ and $\mathbf{1 4 B}$ in the cluster, and $\mathbf{1 4}$ are almost identical. In addition, using these results together with GIAO [12], the calculated ${ }^{13} \mathrm{C}$-NMR shifts for $\mathbf{1 4}$, and $\mathbf{1 4 A}$ and $\mathbf{1 4 B}$ are all closely similar to those observed for $\mathbf{1 4}$ in CDCl_{3} solution (see Fig. 5), thus providing further support for DFT as a model for 14. The major deviations between calculated and experimental ${ }^{13} \mathrm{C}$-NMR chemical shifts of $\mathbf{1 4}$ were for the olefinic C -atoms $\mathrm{C}(2)$ and $\mathrm{C}(3)$, most likely due to interactions between the π structure of $\mathbf{1 4}$ with CDCl_{3} solvent. In addition, this calculation clarified the ${ }^{13} \mathrm{C}$-NMR shift assignments of $\mathrm{C}(8), \mathrm{C}(9)$, and $\mathrm{C}(10)$ of $\mathbf{1 4}$ and by comparison with those C -atoms of $\mathbf{1 0 a}, \mathbf{1 0 b}$, and $\mathbf{1 3}$.

However, in contrast to the agreement among the NMR results, B3LYP overestimated the smallest separations between $\mathbf{1 4 A}$ and $\mathbf{1 4 B}$ within the $\mathbf{1 4 A} \cdot \mathbf{1 4 B}$ cluster by $0.2 \AA$ (see Table 3). Failure of B3LYP to account for dispersion interactions has already been noted [13]. Corrections proposed to account for dispersion effects [14] include $\omega \mathrm{B} 97 \mathrm{XD} / 6-3-11 \mathrm{G}^{*}$ [11]. As seen from Table 3, this procedure does more closely account for the smallest separations between $\mathbf{1 4 A}$ and $\mathbf{1 4 B}$ within the $\mathbf{1 4 A} \cdot \mathbf{1 4 B}$ cluster compared to the B3LYP calculations.

Finally, it may be suggested that, in case $\mathbf{1 4}$ is dimeric in solution, a calculation which makes use of the BSSE (Basic Set Superposition Error) [15] energy correction might be appropriate of the energy of interaction of $\mathbf{1 4 A}$ and $\mathbf{1 4 B}$ within the hypothetical dimeric cluster. Since we have no evidence that 14 is aggregated in CDCl_{3} solution such a calculation is not now within the bounds of this study.

Conclusions. - An efficient route to a hetero polycyclic analog of the alkaloid framework, via Diels-Alder cyclization of a 1,2-dihydropyridine, has been firmly established using a combination of X-ray crystallography, calculations, and NMR. The structure of its 2,4-dinitrophenyl derivative shows interesting geometric distortions, as well as unusual dimeric clustering in the solid state.

[^3]

Fig. 10. a) Intermolecular stacking in the solid state showing closest separations between molecules of 1-(cis-2,6-dimethylpiperidine-1-yl)-2,4-dinitrobenzene [6g]. Amino substituent is abbreviated as a single bond, see *. b) Closest separations (in A), between 14A and 14B within the dimeric cluster 14A•14B and further apart between clusters. Both figures show the dinitrophenyl portion with abbreviated amino substituent.

This work was generously supported by grants from the National Science Foundation (Grant No. 1058035). We thank our Central Campus Instrumentation Center for technical assistance with the NMR equipment.

Experimental Part

General. Commercially available materials were used without purification. TLC: silica gel $\left(\mathrm{SiO}_{2}\right.$; Silicycle). Colum chromatography (CC): SiO_{2} (Silicycle). ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra: Bruker Avance 300; δ in ppm rel. to $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard, J in Hz. ${ }^{2}$) HR-MS: Waters QTOF; in m / z.

Ethyl 4-(tert-Butyl)-2-(pent-4-en-1-yl)pyridine-1(2H)-carboxylate (9a). Under Ar at r.t., Mg turnings ($3.4 \mathrm{~g}, 0.140 \mathrm{~g}$ atom) and dry THF (45 ml) were loaded into a flask equipped with a reflux condenser. Then, 5-bromopent-1-ene $(16.6 \mathrm{ml}, 20.9 \mathrm{~g}, 140 \mathrm{mmol})$ in 45 ml of dry THF was added dropwise, and the soln. was maintained at a gentle reflux for $c a .1 .5 \mathrm{~h}$. The mixture was allowed to stir for an additional h at r.t. After cannulating the resulting soln. into a second flask and cooling to $0^{\circ}, 4$-(tert-butyl)pyridine $(10.34 \mathrm{ml}, 9.46 \mathrm{~g}, 70 \mathrm{mmol})$ was added, and the mixture was stirred for 10 min , followed by dropwise addition of $\mathrm{ClCOOEt}(6.69 \mathrm{ml}, 7.6 \mathrm{~g}, 70 \mathrm{mmol})$ over 10 min . The soln. was then stirred for another 1.5 h at 0°. Degassed $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{ml})$ was added to quench the reaction. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times$ 60 ml), and the org. phases were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. Solvent was removed by rotary evaporation and then in vacuo, and the residues were separated by $\mathrm{CC}\left(\mathrm{SiO}_{2} ; \mathrm{AcOEt} / \mathrm{hexane} 1: 19\right)$ to give $9 \mathbf{9}(7.2 \mathrm{~g}, 37 \%) .{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra indicated that the two conformers of dihydropyridine derivative 9a were formed. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right): 6.71,6.60(2 d, \mathrm{~N}-\mathrm{CH}=\mathrm{CH}, 0.40 \mathrm{H}+$ $0.56 \mathrm{H}) ; 5.85-5.62\left(m, \mathrm{CH}=\mathrm{CH}_{2}\right) ; 5.36,5.26\left(2 d, \mathrm{CH}-\mathrm{C}\left({ }^{t} \mathrm{Bu}\right)-\mathrm{CH}, 0.47 \mathrm{H}+1.58 \mathrm{H}\right) ; 4.90\left(t,=\mathrm{CH}_{2}\right)$; $4.79-4.65,4.65-4.55(2 m, \mathrm{~N}-\mathrm{CH}, 0.6 \mathrm{H}+0.4 \mathrm{H}) ; 4.16\left(q, \mathrm{CH}_{2} \mathrm{O}\right) ; 1.97\left(q, \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}\right) ; 1.60-1.46$, 1.46-1.30 ($2 \mathrm{~m}, \mathrm{CH}_{2}-\mathrm{CH}_{2}$) ; $1.24\left(t t, \mathrm{MeCH}_{2}\right) ; 1.00\left(\mathrm{~s},{ }^{t} \mathrm{Bu}\right){ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right): 154.1$, $153.2(\mathrm{C}=\mathrm{O}) ; 142.2,141.7\left(C^{-t} \mathrm{Bu}\right) ; 138.6,138.5\left(C \mathrm{H}^{2} \mathrm{CH}_{2}\right) ; 125.0,124.3(\mathrm{~N}-\mathrm{CH}=\mathrm{CH}) ; 114.4,114.3$ $\left(=\mathrm{CH}_{2}\right) ; 113.9,113.5(\mathrm{CH}=) ; 106.4,105.9(\mathrm{CH}=) ; 61.8\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 52.0,51.9(\mathrm{~N}-\mathrm{CH}) ; 33.6,33.5,33.4,33.3$, $33.1\left(\mathrm{CH}_{2}, \mathrm{Me}_{3} \mathrm{C}\right)$; $28.7\left(\mathrm{Me} \mathrm{C}_{3} \mathrm{C}\right)$; 23.6, $23.5\left(\mathrm{CH}_{2}\right) ; 14.4\left(\mathrm{MeCH}_{2} \mathrm{O}\right)$. HR-Q-TOF-MS: $300.1927([M+$ $\mathrm{Na}]^{+}, \mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NNaO}_{2}^{+}$; calc. 300.1939).

Methyl 4-Methyl-2-(pent-4-en-1-yl)pyridine-1(2H)-carboxylate (9b). Under Ar at r.t., Mg turnings $(2.21 \mathrm{~g}, 0.091 \mathrm{~g}$ atom $)$ and dry THF $(45 \mathrm{ml})$ were loaded into a flask equipped with a reflux condenser. Then, 5-bromopent-1-ene ($10.9 \mathrm{ml}, 13.7 \mathrm{~g}, 92 \mathrm{mmol}$) in 45 ml of dry THF was added dropwise, and the soln. was maintained at a gentle reflux for $c a .1 .5 \mathrm{~h}$. The mixture was allowed to stir for an additional h at r.t. After cannulating the resulting soln. into a second flask and cooling to $0^{\circ}, 4$-methylpyridine $(4.4 \mathrm{ml}$, $4.21 \mathrm{~g}, 45 \mathrm{mmol}$) was added, and the mixture was stirred for 10 min , followed by dropwise addition of ClCOOMe ($3.17 \mathrm{ml}, 3.87 \mathrm{~g}, 41 \mathrm{mmol}$) over 10 min . The soln. was stirred for another 1.5 h at 0°. Degassed $\mathrm{H}_{2} \mathrm{O}(5.4 \mathrm{ml})$ was added to quench the reaction, and the precipitate was removed by filtration. The filtrate was dried $\left(\mathrm{MgSO}_{4}\right)$. Solvent was removed by rotary evaporation and then in vacuo, and the residues were separated by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$; AcOEt/hexane $\left.1: 19\right)$ to afford $9 \mathrm{bb}(4.8 \mathrm{~g}, 52.5 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}$): 6.62, $6.47\left(2 d, \mathrm{~N}-\mathrm{CH}=\mathrm{CH}\right.$); $5.80-5.50\left(m, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ; 5.22-5.08$ (br., $\left.\mathrm{CH}-\mathrm{C}\left({ }^{(} \mathrm{Bu}\right)\right) ; 5.04,4.96\left(2 d, \mathrm{CH}-C\left({ }^{\mathrm{t}} \mathrm{Bu}\right)\right) ; 4.82\left(t,=\mathrm{CH}_{2}\right) ; 4.69-4.51,4.51-4.38(2 m, \mathrm{~N}-\mathrm{CH}) ; 3.65(s$, $\mathrm{MeO}) ; 1.90\left(q, \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}\right) ; 1.62(s, \mathrm{Me}) ; 1.58-1.40,1.40-1.19\left(2 m, \mathrm{CH}_{2}-\mathrm{CH}_{2}, 1.35 \mathrm{H}+3.31 \mathrm{H}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right): 154.4,153.5(\mathrm{C}=\mathrm{O}) ; 138.3\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ; 129.4,128.8(\mathrm{C}-\mathrm{Me}) ; 124.7$, $123.9(\mathrm{~N}-\mathrm{CH}=\mathrm{CH}) ; 117.5,116.9(\mathrm{CH}=) ; 114.2\left(=\mathrm{CH}_{2}\right) ; 109.1,108.8(\mathrm{CH}=) ; 52.6,52.0(\mathrm{~N}-\mathrm{CH}, \mathrm{MeO})$; 33.6, 33.4, 33.2, $33.8\left(\mathrm{CH}_{2}\right) ; 23.4,23.2\left(\mathrm{CH}_{2}\right) ; 20.1$. HR-Q-TOF-MS: $162.14\left([M-\mathrm{COOMe}]^{+}, \mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}^{+}\right.$; calc. 162.13).
tert-Butyl 4-(tert-Butyl)-2-(pent-4-en-1-yl)pyridine-1 $(2 \mathrm{H})$-carboxylate $\mathbf{(9 c})$. A mixture of redistilled ${ }^{t} \mathrm{BuOH}(6.7 \mathrm{ml}, 5.19 \mathrm{~g}, 70 \mathrm{mmol})$, dry 4-(tert-butyl)pyridine ($20.68 \mathrm{ml}, 18.92 \mathrm{~g}, 140 \mathrm{mmol}$), and dry THF $(200 \mathrm{ml})$ was cooled to -78° under Ar. Then, a $20 \% \mathrm{COCl}_{2}$ soln. $(37 \mathrm{ml}, 70 \mathrm{mmol})$ in toluene was added dropwise within 30 min . A large amount of 4 -(tert-butyl)pyridinium chloride precipitated, and vigorous
${ }^{2}$) The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of new compounds are available as Supplementary Material from the corresponding author.
stirring was continued for 1 h . The mixture was warmed to 0°. Then, the Grignard reagent prepared as described above from 5-bromopent-1-ene ($10.4 \mathrm{~g}, 70 \mathrm{mmol}$) in THF (100 ml) was added slowly over 30 min , and stirring was continued for another 30 min . The reaction was quenched with degassed $\mathrm{H}_{2} \mathrm{O}$ $(40 \mathrm{ml})$, the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 60 \mathrm{ml})$, and the org. phases were combined and dried $\left(\mathrm{MgSO}_{4}\right)$. Solvent was removed by rotary evaporation and in vacuo. Finally, the residues were separated by $\mathrm{CC}\left(\mathrm{SiO}_{2}\right.$; AcOEt/hexane $\left.1: 19\right)$ to yield $9 \mathrm{c}(2 \mathrm{~g}, 9.4 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $290 \mathrm{~K}): 6.68,6.53(2 d, \mathrm{~N}-\mathrm{CH}=\mathrm{CH}) ; 5.81-5.60\left(m, \mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}\right) ; 5.20$ (br., $\mathrm{CH}-\mathrm{C}\left({ }^{t} \mathrm{Bu}\right)$); 4.87 (t, $\left.=\mathrm{CH}_{2}\right) ; 4.72-4.59,4.59-4.40(2 m, \mathrm{~N}-\mathrm{CH}) ; 1.94\left(q, \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}\right) ; 1.42\left(s, \mathrm{COOCMe}_{3}\right) ; 1.40-1.22(m$, $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}\right) ; 0.98\left(\mathrm{C}-\mathrm{CMe}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right): 152.9,152.0(\mathrm{C}=\mathrm{O}) ; 142.2,141.7$ $\left(C-\mathrm{CMe}_{3}\right) ; 138.5,138.4\left(\mathrm{CH}=\mathrm{CH}_{2}\right) ; 124.9(\mathrm{~N}-\mathrm{CH}=\mathrm{CH}) ; 114.4,114.2\left(=\mathrm{CH}_{2}\right) ; 113.6$, $113.3(\mathrm{CH}=)$; 105.6, $105.0(\mathrm{CH}=) ; 80.5\left(\mathrm{Me}_{3} \mathrm{CO}\right) ; 52.2,51.2(\mathrm{~N}-\mathrm{CH}) ; 33.6,33.3\left(\mathrm{CH}_{2}, \mathrm{C}-\mathrm{CMe}_{3}\right) ; 28.7$, $28.1\left(\mathrm{Me}_{3} \mathrm{C}\right)$; $23.6\left(\mathrm{CH}_{2}\right)$. HR-Q-TOF-MS: $328.2249\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NNaO}_{2}^{+}\right.$; calc. 328.2252).

Ethyl 8-(tert-Butyl)-1,2,3,4,4a,5,6,8a-octahydro-1,6-epiminonaphthalene-9-carboxylate (10a). Under $\mathrm{Ar}, 9 \mathrm{a}(7.2 \mathrm{~g}, 26 \mathrm{mmol})$ was refluxed in triglyme $(72 \mathrm{~g})$ at 216° for 3 d . The solvent was removed by distillation under reduced pressure. The NMR spectra and TLC of the residue indicated almost quant. conversion to the intramolecular Diels-Alder adduct. Further purification by $\mathrm{CC}\left(\mathrm{SiO}_{2} ; \mathrm{AcOEt} / \mathrm{hexane}\right.$ $1: 3$) gave $\mathbf{1 0 a}(2.4 \mathrm{~g}, 33 \%)$ based on ($\mathbf{9 a}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right): 5.89,5.85(d d, \mathrm{H}-\mathrm{C}(2))$; 4.63, 4.49 (tt, H-C(1)); 4.10-3.80 (m, COOCH_{2}); 3.14, $3.08(2 \mathrm{~s}, \mathrm{H}-\mathrm{C}(7)) ; 2.29(m, \mathrm{H}-\mathrm{C}(4)) ; 2.12(d d$, 1 H of $\left.\mathrm{CH}_{2}(8)\right) ; 1.65-1.30\left(m, \mathrm{CH}_{2}(10), \mathrm{CH}_{2}(6), \mathrm{H}-\mathrm{C}(5), 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}(9)\right) ; 1.30-1.15(m, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}(9)\right) ; 1.15-1.02\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}(8), \mathrm{COOCH}_{2} \mathrm{Me}\right) ; 0.91\left(s,{ }^{t} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right)$: 156.3, 156.1, $155.2(\mathrm{C}(3), \mathrm{C}=\mathrm{O}) ; 121.4,120.7(\mathrm{C}(2)) ; 60.3\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 52.2,52.1(\mathrm{C}(7)) ; 47.4,47.2(\mathrm{C}(1))$; 40.3, $40.0(\mathrm{C}(4)) ; 34.4\left(\mathrm{Me}_{3} \mathrm{C}\right) ; 32.3,32.0(\mathrm{C}(6)) ; 29.4,29.3(\mathrm{C}(10)) ; 28.4,27.2(\mathrm{C}(8)) ; 27.3\left(\mathrm{Me}_{3} \mathrm{C}\right) ; 26.6$ $(\mathrm{C}(5)) ; 14.4\left(\mathrm{COOCH}_{2} \mathrm{Me}\right) ; 14.3,14.2(\mathrm{C}(9)) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right): 5.92,5.84$ (dd, $\mathrm{H}-\mathrm{C}(2))$; 4.66, $4.53(t t, \mathrm{H}-\mathrm{C}(1)) ; 4.11-3.90\left(m, \mathrm{COOCH}_{2}\right) ; 3.18,3.12(2 s, \mathrm{H}-\mathrm{C}(7))$; 2.32, 2.31 ($2 s$, $\mathrm{H}-\mathrm{C}(4)) ; 2.21,2.10\left(2 d, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}(8)\right) ; 1.60(d, \mathrm{H}-\mathrm{C}(5)) ; 1.59-1.43\left(m, 1 \mathrm{H}^{2}\right.$ of $\mathrm{CH}_{2}(9), 1 \mathrm{H}^{2}$ of $\mathrm{CH}_{2}(10)$, 1 H of $\left.\mathrm{CH}_{2}(6)\right) ; 1.41\left(t, 1 \mathrm{H}\right.$ of $\mathrm{CH}_{2}(10), 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}(6)\right) ; 1.27\left(d, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}(9)\right) ; 1.16,1.12(2 t, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}(8), \mathrm{COOCH}_{2} \mathrm{Me}\right) ; 0.94\left(s, \mathrm{Me}_{3} \mathrm{C}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(201 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right): 156.5,156.3(\mathrm{C}(3)) ; 156.2$, $155.3(\mathrm{C}=\mathrm{O}) ; 121.4,120.7(\mathrm{C}(2)) ; 60.5,60.4\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 52.3,52.2(\mathrm{C}(7)) ; 47.5,47.3(\mathrm{C}(1)) ; 40.4,40.1(\mathrm{C}(4))$; $34.5\left(\mathrm{Me}_{3} C\right) ; 32.4,32.1(\mathrm{C}(6)) ; 29.5,29.4(\mathrm{C}(10)) ; 28.5,27.4(\mathrm{C}(8)) ; 27.8\left(\mathrm{Me}_{3} \mathrm{C}\right) ; 27.3,27.3(\mathrm{C}(5)) ; 14.5$, 14.4, 14.4, $14.3\left(\mathrm{COOCH}_{2} M e, \mathrm{C}(9)\right)$. HR-Q-TOF-MS: $300.1921\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NNaO}_{2}^{+}\right.$; calc. 300.1939).

Methyl 8-methyl-1,2,3,4,4a,5,6,8a-octahydro-1,6-epiminonaphthalene-9-carboxylate (10b). Under Ar, $\mathbf{9 b}(2.4 \mathrm{~g}, 10.9 \mathrm{mmol})$ was refluxed in 15 g of triglyme at 216° over 2 d . The solvent was removed under reduced pressure. The NMR spectra of the crude product indicated almost quant. conversion to the Diels-Alder product contaminated with triglyme. Purification using $\mathrm{CC}\left(\mathrm{SiO}_{2} ; \mathrm{AcOEt} / \mathrm{hexane} 1: 3\right)$ gave of $\mathbf{1 0 b}\left(0.4 \mathrm{~g}, 16.7 \%\right.$ based on 9b). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right): 5.84,5.76(d d, \mathrm{H}-\mathrm{C}(2)) ; 4.60$ 4.40, 4.40-4.20 ($m, \mathrm{H}-\mathrm{C}(1)$); 3.44, 3.43 ($2 s, \mathrm{COOMe}$); 3.15, $3.10(2 s, \mathrm{H}-\mathrm{C}(7)) ; 2.15-1.85(m, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}(8), \mathrm{H}-\mathrm{C}(4)\right) ; 1.60(s, \mathrm{Me}-\mathrm{C}(3)) ; 1.56(s, \mathrm{H}-\mathrm{C}(5)) ; 1.50-1.34,1.34-1.20\left(2 m, \mathrm{CH}_{2}(10), \mathrm{CH}_{2}(6), 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}(9)\right)$; $1.14\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}(9)\right) ; 1.10-0.90\left(m, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}(8)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right)$: $156.4,155.4(\mathrm{C}=\mathrm{O}) ; 144.0,143.9(\mathrm{C}(3)) ; 125.6,125.0(\mathrm{C}(2)) ; 51.5,51.4(\mathrm{MeO}) ; 51.1,50.8(\mathrm{C}(7)) ; 47.0,46.9$ ($\mathrm{C}(1)$); 44.2, 43.9 ($\mathrm{C}(4)$); 32.1, 31.9 (C(6)); 29.0, 28.9 (C(10)); 27.9, 26.9 (C(8)); 25.8 (C(5)); 19.1 ($\mathrm{Me}-\mathrm{C}(3)) ; 14.0,15.0(\mathrm{C}(9))$. HR-Q-TOF-MS: $244.1317\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NNaO}_{2}^{+}\right.$; calc. 244.1313).

4-(tert-Butyl)-2-(pent-4-en-1-yl)pyridine (11). Compound $9 \mathrm{c}(2 \mathrm{~g}, 6.6 \mathrm{mmol})$ was refluxed in 20 g of triglyme at 216° for 1 d . Solvents and volatile materials were removed under distillation under reduced pressure. The NMR data of the crude product indicated almost quant. conversion to 11. A pure sample, 0.1 g , was obtained by $\mathrm{CC}\left(\mathrm{SiO}_{2} ; \mathrm{AcOEt}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right): 8.30(d, \mathrm{H}-\mathrm{C}(6)) ; 7.00(s$, $\mathrm{H}-\mathrm{C}(3)) ; 6.95(d, \mathrm{H}-\mathrm{C}(5)) ; 5.85-5.60\left(m, \mathrm{CH}=\mathrm{CH}_{2}\right) ; 4.87\left(t,=\mathrm{CH}_{2}\right) ; 2.67\left(t, \mathrm{~N}-\mathrm{C}-\mathrm{CH}_{2}\right) ; 2.01(q$, $\left.=\mathrm{CH}-\mathrm{CH}_{2}\right) ; 1.73$ (quint., $\left.\mathrm{N}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right) ; 1.17\left(s,{ }^{t} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right): 161.5$, $159.8(\mathrm{C}(2), \mathrm{C}(4))$; 148.9 ($\mathrm{C}(6))$; $138.2(=\mathrm{CH}) ; 119.4,117.8(\mathrm{C}(3), \mathrm{C}(5)) ; 114.6\left(=\mathrm{CH}_{2}\right) ; 37.7$ $\left(\mathrm{N}-\mathrm{C}-\mathrm{CH}_{2}\right) ; 34.3\left(\mathrm{Me}_{3} \mathrm{C}\right) ; 33.2\left(=\mathrm{CH}-\mathrm{CH}_{2}\right) ; 30.3\left(\mathrm{Me}_{3} \mathrm{C}\right) ; 28.9\left(\mathrm{~N}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)$. HR-Q-TOF-MS: $204.1755\left([M+\mathrm{H}]^{+}, \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}^{+}\right.$; calc. 204.1752).

8-(tert-Butyl)-1,2,3,4,4a,5,6,8a-octahydro-1,6-epiminonaphthalene (13). Under Ar at -20 to -30°, $\operatorname{BuLi}(12 \mathrm{ml} ; 1.6 \mathrm{~m}, 19.2 \mathrm{mmol}, 3.9$ equiv.) in hexane was added dropwise to $\mathbf{1 0 a}(1.35 \mathrm{~g}, 4.87 \mathrm{mmol})$ in

20 ml of $\mathrm{Et}_{2} \mathrm{O}$. The mixture was allowed to warm to r.t. overnight with stirring. The reaction was quenched with $\mathrm{MeOH}(5 \mathrm{ml})$ and then $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$. The resulting soln. was acidified with 4 ml of aq. 37% HCl . The aq. phase was separated and neutralized to pH of $c a .10$ with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ soln., and the latter was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{ml})$. The combined org. phase was dried $\left(\mathrm{MgSO}_{4}\right)$, and solvent was removed by rotary evaporation and in vacuo to afford 0.4 g of a light yellow oil whose NMR data were expected for 13. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right)$: $5.79(d, \mathrm{H}-\mathrm{C}(2)) ; 3.40-3.20(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1)) ; 2.47(s$, $\mathrm{H}-\mathrm{C}(7)) ; 2.07(s, \mathrm{H}-\mathrm{C}(4)) ; 1.99$ (br., NH) ; $1.84-1.60\left(m, 1 \mathrm{H}^{2}\right.$ of $\left.\mathrm{CH}_{2}(9)\right) ; 1.60-1.46\left(m, 1 \mathrm{H}\right.$ of CH_{2} at $\delta(\mathrm{C}) 30.6), 1.46-1.33\left(m, 1 \mathrm{H}\right.$ of $\mathrm{CH}_{2}(6), 1 \mathrm{H}$ of CH_{2} at $\left.\delta(\mathrm{C}) 29.3, \mathrm{H}-\mathrm{C}(5)\right) ; 1.33-1.08(m, 1 \mathrm{H}$ of $\mathrm{CH}_{2}(6), 1 \mathrm{H}$ of CH_{2} at $\delta(\mathrm{C}) 30.6,1 \mathrm{H}$ of CH_{2} at $\delta(\mathrm{C}) 29.3,1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}(9)\right) ; 0.86\left(s,{ }^{t} \mathrm{Bu}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}$): 155.5 (C(3)); $122.0(\mathrm{C}(2)) ; 49.4(\mathrm{C}(7)) ; 47.1(\mathrm{C}(1)) ; 38.8(\mathrm{C}(4)) ; 34.1\left(\mathrm{Me}_{3} \mathrm{C}\right)$; $32.5(\mathrm{C}(6)) ; 30.6\left(\mathrm{CH}_{2}\right) ; 29.3\left(\mathrm{CH}_{2}\right) ; 27.7\left(\mathrm{Me}_{3} \mathrm{C}, \mathrm{C}(5)\right) ; 13.7(\mathrm{C}(9))$.

8-(tert-Butyl)-1,2,3,4,4a,5,6,8a-octahydro-9-(2,4-dinitrophenyl)-1,6-epiminonaphthalene (14). A sample of $\mathbf{1 3}(0.27 \mathrm{~g}, 1.4 \mathrm{mmol})$, mixed with 2,4-dinitrochlorobenzene $(0.278 \mathrm{~g}, 1.4 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(0.2 \mathrm{~g}, 1.4 \mathrm{mmol})$, was refluxed in 3 ml of MeOH for 1 h as described in [5], cooled to r.t., and filtered to afford 0.48 g of yellow powder. NMR data indicated almost quant. conversion of $\mathbf{1 3}$ to $\mathbf{1 4} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right): 8.63(d, 1$ arom. H$) ; 8.10$ ($d d, 1$ arom. H$) ; 6.82$ ($d, 1$ arom. H) ; 5.84 ($d d$, $\mathrm{H}-\mathrm{C}(2)) ; 3.99-3.82(m, \mathrm{H}-\mathrm{C}(1)) ; 3.44(s, \mathrm{CH}(7)) ; 2.61(d, \mathrm{H}-\mathrm{C}(4)) ; 2.10\left(d t, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}(6)\right) ; 2.00-1.75$

Table 4. Crystallographic Data of $\mathbf{1 4}$ and Structure-Refinement Details

Formula	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$
$M_{\text {r }}$	371.43
Crystal size [mm]	$0.15 \times 0.15 \times 0.31$
Temp. [K]	210(2)
Radiation type	$\mathrm{MoK}_{\alpha}(0.71073$ Å)
Crystal system	triclinic
Space group	$P \overline{1}$
Z	4
Unit cell dimensions:	
$a[\AA]$	11.4885(2)
b [\AA]	12.6257(2)
$c[\AA]$	14.7269(2)
$\alpha\left[{ }^{\circ}\right]$	65.327(1)
$\beta\left[{ }^{\circ}\right]$	81.496(1)
$\gamma\left[{ }^{\circ}\right]$	84.185(1)
$V\left[\AA^{3}\right]$	1917.92(5)
D_{x} (calc.) $\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.286
Absorption coefficient [mm^{-1}]	0.091
$F(000)$	792
θ Range for data collection	2.22-24.95 ${ }^{\circ}$
Index ranges	$-13 \leq h \leq 13,-14 \leq k \leq 14,-17 \leq l \leq 17$
Reflections collected	47303
Independent reflections	6710 [$\left.R_{\text {int }}=0.044\right]$
Observed reflections [$I>2 \sigma(I)$]	4861
Completeness to $\theta=24.95^{\circ}$ [\%]	99.6
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	6710/0/493
Goodness-of-fit on F^{2}	1.020
Final R indices [$I>2 \sigma(I)$]	$R^{1}=0.0539, w R^{2}=0.1390$
R Indices (all data)	$R^{1}=0.0795, w R^{2}=0.1541$
Largest diff. peak and hole [e \AA^{-3}]	0.697; -0.307

($d d, 1 \mathrm{H}$ of CH_{2} at $\delta(\mathrm{C}) 26.8, \mathrm{CH}$ at $\left.\delta(\mathrm{C}) 26.5\right) ; 1.76-1.64\left(m, 1 \mathrm{H}^{2}\right.$ of $\mathrm{CH}_{2}(10), 1 \mathrm{H}^{2}$ of $\left.\mathrm{CH}_{2}(9)\right) ; 1.61-1.44$ $\left(m, 1 \mathrm{H}\right.$ of $\mathrm{CH}_{2}(6), 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}(10)\right) ; 1.44-1.30\left(m, 1 \mathrm{H}\right.$ of CH_{2} at $\delta(\mathrm{C}) 26.8,1 \mathrm{H}^{2}$ of $\left.\mathrm{CH}_{2}(9)\right) ; 1.05\left(s,{ }^{t} \mathrm{Bu}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 290 \mathrm{~K}\right): 157.7 ; 146.4 ; 136.7 ; 135.6 ; 127.9 ; 124.3 ; 120.1 ; 116.1 ; 56.2$ (C(7)); 53.9 (C(1)); $40.3(\mathrm{C}(4)) ; 34.8\left(\mathrm{Me}_{3} C\right) ; 30.4(\mathrm{C}(6)) ; 29.5(\mathrm{C}(10)) ; 27.8\left(\mathrm{Me}_{3} \mathrm{C}\right) ; 26.8 ; 26.5 ; 14.7(\mathrm{C}(9))$. Further crystallization from MeOH provided crystals suitable for X-ray crystallography. HR-Q-TOF-MS: $394.1752\left([M+\mathrm{Na}]^{+}, \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{4}^{+}\right.$; calc. 394.1743) .

Crystallography ${ }^{3}$). Crystal data of $\mathbf{1 4}$ and parameters of refinement are compiled in Table 4. The data-collection crystal was a pale orange rectangular block. Data was collected on a Nonius Kappa CCD diffractometer at 210 K equipped with an Oxford Cryosystems cryostream cooler. The data-collection strategy was set up to measure a hemisphere of reciprocal space with a redundancy factor of 3.5 , which means that 90% of these reflections were measured at least 3.5 times. Phi and omega scans with a frame width of 1.0° were used. Data integration was done with DENZO [16], and scaling and merging of the data was conducted with SCALEPACK [16].

The structure was solved in space group $P \overline{1}$ by direct methods according to SHELXS-97 [17]. There are two molecules in the asymmetric unit, labeled as \mathbf{A} and \mathbf{B}. Full-matrix least-squares refinements based on F^{2} were performed in SHELXL-97 [17]), as incorporated in the WinGX package [18]).

For each Me group, the H -atoms were added at calculated positions using a riding model with $U(\mathrm{H})=1.5 \cdot U_{\text {eq }}$ (bonded C -atom). The torsion angle, which defines the orientation of the Me group about the $\mathrm{C}-\mathrm{C}$ bond, was refined. The rest of the H -atoms was included in the model at calculated positions using a riding model with $U(\mathrm{H})=1.2 \cdot U_{\mathrm{eq}}$ (bonded atom). Neutral atom scattering factors were used and include terms for anomalous dispersion [19].

REFERENCES

[1] a) G. Fraenkel, J. W. Cooper, C. M. Fink, Angew. Chem., Int. Ed. 1970, 9, 523; b) R. E. Lyle, J. L. Marshall, D. L. Comins, Tetrahedron Lett. 1977, 18, 1015; c) R. Yamaguchi, Y. Nakazona, M. Kawanisi, Tetrahedron Lett. 1983, 24, 1801.
[2] G. Fraenkel, J. W. Cooper, J. Am. Chem. Soc. 1977, 93, 7228.
[3] See for example: G. R. Krow, Y. B. Lee, S. W. Szczepanski, R. Raghavachari, Tetrahedron Lett. 1985, 26, 2617; G. R. Krow, Y. B. Lee, R. Raghavachari, S. W. Szczepanski, P. V. Alston, Tetrahedron 1991, 47, 8499.
[4] G. Fraenkel, J. W. Cooper, Tetrahedron Lett. 1968, 9, 1825.
[5] B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, 'Vogel's Textbook of Practical Organic Chemistry', 5th edn., Longman, New York, 1989, p. 1276.
[6] a) J. Ellena, G. Punte, B. E. Rivero, M. V. Remedi, E. B. de Vargas, R. H. de Rossi, J. Chem. Crystallogr. 1995, 25, 801; b) G. Punte, B. E. Rivero, S. E. Sukolovsky, N. S. Nudelman, Acta Crystallogr., Sect. C 1991, 47, 1222; c) G. Punte, B. E. Rivero, S. E. Sukolovsky, N. S. Nudelman, Acta Crystallogr., Sect. C 1989, 45, 1952; d) J. N. Low, M. S. V. Doidge-Harrison, J. Cobo, Acta Crystallogr., Sect. C 1996, 52, 964; e) L. Prasad, E. J. Gabe, Y. Le Page, Acta Crystallogr., Sect. B 1982, 38, 2780; f) G. Punte, B. E. Rivero, Acta Crystallogr., Sect. C 1991, 47, 2118; g) M. F. Mackay, D. J. Gale, J. F. K. Wilshire, Aust. J. Chem. 2000, 53, 715.
[7] M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, J. Phys. Chem. 2009, 113, 5806.
[8] R. Taylor, G. Kennard, J. Am. Chem. Soc. 1982, 104, 5063; G. R. Desiraju, Acc. Chem. Res. 1991, 24, 290; T. W. Panunto, Z. Urbanczyk-Lipowska, R. Johnson, M. G. Etter, J. Am. Chem. Soc. 1987, 109, 7786.
[9] A. D. Becke, J. Chem. Phys. 1993, 98, 5648; C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785; S. H. Voska, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200; P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
${ }^{3}$) CCDC-951426 contains the supplementary crystallographic data for this article. These data can be obtained free of charge via http://www.dc.ac.uk/data_requested/cif.
[10] A. D. McLean, G. S. Chandler, J. Chem. Phys. 1980, 72, 5639; K. Raghavachari, J. S. Binkley, R. Seeger, J. A. Pole, J. Chem. Phys. 1980, 72, 650.
[11] J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 2008, 128, 84106; J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615.
[12] F. London, J. Phys. Radium 1937, 8, 394; R. McWeeny, Phys. Rev. 1962, 126, 1028; R. Ditchfield, Mol. Phys. 1974, 27, 789; K. Wolinsky, J. K. Hilton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251; J. R. Cheeseman, J. W. Trucks, M. J. Frisch, J. Chem. Phys. 1996, 104, 5497.
[13] M. J. Allen, D. J. Tozer, J. Chem. Phys. 2002, 117, 11113.
[14] I.-C. Lin, A. Lilienfeld, M. D. Coutinho-Neto, I. Tavernelli, U. Rothlisbeger, J. Phys. Chem. B 2007, 111, 14346.
[15] R. Fletcher, Mol. Phys. 1970, 19, 55; S. Simon, M. Duran, J. J. Dannenberg, J. Chem. Phys. 1996, 105, 11024.
[16] Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307.
[17] G. M. Sheldrick, SHELXS-97 and SHELXL-97, Acta Crystallogr., Sect. A 2008, 64, 112.
[18] L. J. Farrugia, WinGX-Version 1.70.01, J. Appl. Crystallogr. 1999, 32, 837.
[19] 'International Tables for Crystallography', Kluwer Academic Publishers, Dordrecht, 1992, Vol. C.

[^0]: Structural studies of the N-(2,4-dinitrophenyl) derivative of a Diels-Alder-cyclized 1,2-dihydropyridine both unequivocally established the polycyclic framework and revealed interesting distortions of aromatic structure and unique dimeric clustering of the aromatic entities in the solid state.

[^1]: ${ }^{\text {a }}$) Atom used to define the least-squares plane.

[^2]: ${ }^{\text {a }}$) Sum of Van der Waals radii, Table 12 in [7].

[^3]: ${ }^{1)}$ Computational data are available from the authors.

